
ETE3 and the Collatz Conjecture
Pedro Urbina, CEH

@SecureSet

Problem Statement
Start with a number

The Big Question...

If the number is one, stop

If the number is even, divide it by two

If the number is odd, multiply by three and add one

Odd numbers become even numbers and alter their

factorizations, even numbers lose a factor of two at

each iteration until they become odd.

Do all numbers return to one?

Lets try a few examples...

4 -> 2 -> 1

3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

15 -> 46 -> 23 -> 70 -> 35 -> 106 -> 53 -> 160 -> 80 ->

40 -> 20 -> 10(!) -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

27 -> 82 -> 41 -> 124 -> 62 -> 31 -> 94 -> 47 -> 142 ->

71 -> 214 -> 107 -> 322 -> 161 -> 484 -> 242 -> 121 ->

364 -> 182 -> 91 -> 274 -> 137 -> 412 -> 206 -> 103 ->

310 -> 155 -> 466 -> 233 -> 700 -> 350 -> 175 -> 526

-> 263 -> 790 -> 395 -> 1186 -> 593 -> 1780 -> 890 -> 445 -> 1336 -> 668

-> 334 -> 167 -> 502 -> 251 -> 754 -> 377 -> 1132 -> 566 -> 283 -> 850 ->

425 -> 1276 -> 638 -> 319 -> 958 -> 479 -> 1438 -> 719 -> 2158 -> 1079 ->

3238 -> 1619 -> 4858 -> 2429 -> 7288 -> 3644 -> 1822 -> 911 -> 2734 -> 1367

-> 4102 -> 2051 -> 6154 -> 3077 -> 9232 -> 4616 -> 2308 -> 1154 -> 577 -> 1732 ->866 -> 433 -> 1300 ->

650 -> 325 -> 976 -> 488 -> 244 -> 122 -> 61 -> 184 -> 92 -> 46 -> 23 -> 70 -> 35 -> 106 -> 53 -> 160 -> 80 -> 40 -> 20 ->

10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Stopping Time and Interesting Sequences

Powers of two have a stop time equal to their exponent

Sequence of Stopping Times

Stopping time is the number of steps for an input to

return to one. Twenty seven has a stopping time of 111

Steps

27

V
a
l
u

e
s

0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15,

15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8,

109, 8, 29, 16, 16, 16, 104, 11, 24, 24… (A006577)

Sequence of Inputs with Largest Stopping Times

1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327,

649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171… (A006877)

Sequence of Inputs with Largest Peak Values

1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663,

20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487,

270271, 665215, 704511… (A006884)

Convergent Return Paths and Delay Classes

12 -> 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

There exist consecutive inputs which have the

same stopping time, how do they converge?

Inputs with the same stopping time are said to be

in the same Delay Class, the lowest such number is

known as the Class Record.

The largest class record thus far is for class 2258,

that number is 279,731,455,495,736,617.

12 and 13 are both part of Delay Class 9, but 12 is

also the Class Record.

All members of a Delay Class eventually converge,

and typically early on.

First 100,000 numbers grouped into Delay Classes

But Why
“Mathematics may not be ready for such problems”

Paul Erdos

The Naive Implementation
Considerations

● Statistic Logging

○ Steps, Peaks, Orbits

○ Consecutive Runs

○ CSV Output

● Inefficiencies

○ Global Interpreter Lock

○ Duplicative

○ About 30 minutes to

compute up to 10M

● Python

○ Big number support

○ Library availability

○ Generally efficient

The Parallel Naive Implementation

● pp library for threaded jobs

● tqdm module for loading bar

● CPU Utilization +~100%

● Writing 60GB+ files can crash things

● Still recomputing values :(

Considerations

Refactoring for Dynamic Growth
The Inverse Problem Statement

In order to explore the Collatz problem with a tree

structure it makes sense to grow from existing

data, rather than to trace paths to a root.

The inverse function doesn’t stop on a condition, so

depth of the tree will be the practical limit.

There are also multiple outputs on the alternative

condition, so a decision must be made about the order

of processing, I decided to use a breadth-first

approach with a queue.

ETE3 - The (Python) Environment for Tree Exploration
Features

● Dynamic, Programmable, Powerful

● Newick Format

● Rendering Capabilities

● Phylogenetic-specific functions

Graphing Time

I Like Big Graphs

Thank You

pedrourbina.com
@peddrrrooooo

